"I feel like a scientist": Collecting and analyzing data at various grade levels

Dianne L. Anderson, PhD. Biology Department - Point Loma Nazarene University Science Faith Alliance Professional Development Day October 25, 2019

Doing science, not just learning about it

In art class, you make art. In a choir or band class, you perform music. In PE class, you exercise. In a writing class, you write.

In too many science classes, students learn about science, but don't DO science.

Process of science (6 skills)

- #1 Given a source of information, determine whether it is reliable & credible.
- #2 Given a graph, table, or model, draw a valid conclusion based on the data.
- #3 Given a set of data, create a graph, table, or model to effectively communicate information.
- #4 Given directions for an experiment, collect and summarize data.
- #5 Given a testable hypothesis, create and carry out an experiment to test it.
- #6 Make observations, then generate a testable hypothesis.

Process of science (6 skills)

- #1 Given a source of information, determine whether it is reliable & credible.
- #2 Given a graph, table, or model, draw a valid conclusion based on the data.
- #3 Given a set of data, create a graph, table, or model to effectively communicate information.
- #4 Given directions for an experiment, collect and summarize data.
- #5 Given a testable hypothesis, create and carry out an experiment to test it.
- #6 Make observations, then generate a testable hypothesis.

Which of these skills will they be using MOST often throughout their lives? (This explains the sequence)

Draw a conclusion based on this graph

Draw a conclusion based on this graph

Talk about value of a legend, a title, and axes labels

Process of science (6 skills)

- #1 Given a source of information, determine whether it is reliable & credible.
- #2 Given a graph, table, or model, draw a valid conclusion based on the data.
- #3 Given a set of data, create a graph, table, or model to effectively communicate information.
- #4 Given directions for an experiment, collect and summarize data.
- #5 Given a testable hypothesis, create and carry out an experiment to test it.
- #6 Make observations, then generate a testable hypothesis.

Does your school do science projects, or several smaller experiments? Why?

Discuss pros and cons

Characteristics of good experimental systems

- Relatively inexpensive
- Nontoxic
- Simple quick to learn system, then "play" with it.
- Use what your school setting offers

Examples of experimental systems for biology

- Choice chambers use guppies or pillbugs
- Jello and fresh pineapple for enzyme activity
- Nail polish impressions of stomata on leaves (microscope lab)
- Albino corn seedlings
- Human physiology reaction time
- Human physiology heart rate

Physics? Chemistry?

- Comparing various insulating materials
- Testing pH of various water samples
- Recording temperature and humidity readings at various times of day.
- Other ideas??

Data collection

- Have them decide how to collect and organize the data don't provide tables.
- Collect enough data to be meaningful
- Have them try to replicate results
 - Did the experiment show some differences or a trend? If so, repeat.
 - Did it not go well? Revise experiment and try again.

Data analysis

- Provide tables of data AND a summary (graph, chart, etc.)
- Statistics: Means -> Std dev. -> slope, t-tests, Chi square, ANOVA?
- By hand or using software?
- Type of graphs
 - Encourage them to graph data in various ways
 - Graphing is all about communication
 - Have them present their <u>rough drafts</u>
 - Improve based on class feedback

Types of graphs

Growth of the mould *penicillium camemberti* (orange bars) and penicillium roqueforti (blue bars) sampled at different level from ripe cheeses

Can the same data be effectively graphed in all of these ways?

PLNU Master of Science in general biology

Keep your teaching job, AND earn your master's degree

